PMF-articolo-big-data

BIG DATA ANALYTICS FOR BUSINESSES

Condividi questa notizia:

With the term big data we refer to data sets that are so large and complex that traditional software and IT architectures are not able to capture, manage and process in a reasonable time. If a traditional database can handle tables made of millions of rows and tens or few hundreds of columns, big data require tools that can handle the same number of records, but with thousands of columns. Moreover, data are not often available in a structured form, that is, arranged in rows and columns, but are organised in the form of documents, meta data, geographical positions, values detected by IoT sensors and many other forms, ranging from semi-structured to completely-unstructured ones. In fact, the data that make up big data archives can come from heterogeneous sources, such as Web browsing, social media, desktop and mobile applications, but also from sensors embedded in thousands of objects that are part of the so-called Internet of Things (IoT).

NOSQL DATABASES

Traditional SQL databases are designed for reliable transactions and ad-hoc queries on well-structured data. This rigidity represents an obstacle to some types of applications. NoSQL databases overcome these obstacles by storing and handling data in ways that allow greater flexibility and higher operational speeds. Unlike traditional relational databases, many of the NoSQL databases can scale horizontally over hundreds or thousands of servers.

BIG DATA ANALYTICS

The term Big Data Analytics is often used to describe the analytical techniques used to extract information from huge datasets that require advanced technologies for storage, handling and representation. Such techniques come from a vast number of disciplines such as statistics, data mining, machine learning, and so on. They are all very useful techniques and can have various applications. BDA can be classified into four major types of Data Analysis:
The use of predictive and prescriptive analysis can play in favour of the business strategy, by solving problems related to the development and sale of products and services, and those concerning the organisation of the structure.

THE IMPORTANCE OF BIG DATA

Through the use of big data, both companies and organisations can collect data from any source and analyse them in order to find answers that allow to:

LE TECNOLOGIE PER I BIG DATA

Google, Facebook, Twitter e Amazon conoscono tutto di noi perché possiedono dei dati, i nostri dati. Si tratta di dati non strutturati studiati tramite le tecniche di sentiment analysis, che riescono a capire le emozioni contenute nelle informazioni testuali, utili alle aziende e ai politici per rintracciare la direzione dell’opinione pubblica.

Le smart city sono un esempio chiaro e semplice di big data management e big data analyst. Lampioni sensorizzati per gestire meglio il traffico e monitorare l’inquinamento, telecamere a circuito chiuso per ricostruire i percorsi automobilistici sospetti fuori dai locali e dalle banche, tag RFID per rendere cassonetti e sacchetti comunicanti tra loro nella raccolta differenziata; sono tutti esempi di come l’analisi dei dati possa migliorare la vita della comunità, ma non solo.

Anche nel retail l’applicazione dei big data porta benefici, aumentando i margini del 60% con l’analisi dei comportamenti di acquisto. Quindi scontrini, carte fedeltà, interazioni con le promozioni, annunci, e-mail marketing, newsletter e via dicendo. Questa mole di dati rappresenta un’immensa quantità di informazioni di valore che vanno a costruire l’offerta a misura di Cliente. Il geomarketing e la geolocalizzazione generano big data che consentono di generare miliardi di dollari.

Sfruttare il big data management significa andare oltre l’elaborazione degli ordini, significa implementare nuovi sistemi per le campagne di marketing e gestire con astuzia i programmi fedeltà. Il tutto va accompagnato ad un monitoraggio costante dei feedback ricevuti, inclusa la gestione dei reclami, per avere una visione totale dei Clienti, dei prodotti e di tutta l’azienda nel mercato.

Secondo gli analisti di McKinsey, in Europa le amministrazioni pubbliche possono ottenere risparmi nell’ordine di 100 miliardi di euro da una buona gestione dei big data, incrementando l’efficienza operativa. Una cifra che potrebbe aumentare a dismisura se i big data venissero utilizzati anche per ridurre le frodi e gli errori, traguardando la trasparenza fiscale.

Il mercato Analytics conferma il trend rilevato negli ultimi tre anni, con una crescita media del 21% anno su anno, ma rileva anche un divario importante tra grandi imprese e PMI, che rappresentano invece solo il 12% del mercato. 

Soltanto il 7% delle PMI nel 2018, infatti, ha avviato progetti di big data analytics, mentre quattro su dieci dichiarano di svolgere analisi tradizionali sui dati aziendali. Ma la buona notizia è che circa un terzo sembra essere sulla giusta strada sia in termini di consapevolezza che di adeguamento tecnologico e di processo.

I mercati digitali dei big data

La vera sfida dei big data risiede nella capacità delle aziende di riuscire ad analizzare correttamente i dati ottenuti, seguendo questo processo: interrogazione, risposta e visione di dettaglio. Grazie alla crescente minuziosità degli algoritmi è possibile interpretare ogni informazione che percorre la rete, rivoluzionando i tradizionali modelli semplici di business.

Le aziende sfruttano solo una parte delle potenzialità associate ai big data, non solo per questioni di budget associato agli investimenti, ma soprattutto per le competenze che mancano. Sul mercato, infatti, ci sono ancora pochi big data manager che sanno valorizzare i dati aziendali e il settore è ancora nuovo, quindi richiede una preparazione senza precedenti. Per studiare i big data servono doti comunicative e di leadership, ottime capacità di team building, di analisi e di problem solving.

Ecco le quattro tipologie di profili che saranno sempre più richiesti dalle aziende:

BIG DATA E TREND PER IL 2020

Ecco le tendenze che stanno trasformando lo scenario dei big data analysis nelle organizzazioni:

Riconoscere i big data e sfruttarli al meglio

Non è sempre facile riconoscere i big data rispetto ai dati tradizionali, ma è importante concentrarsi sulle 3 V:

A queste 3 V si aggiungono altre 4 V (variabilità, veridicità, visualizzazione e valore), ma per distinguere i big data da quelli standard è indispensabile la presenza delle prime tre variabili. Il percorso da seguire per utilizzare i big data nelle strategie aziendali e di marketing si può riassumere in 5 step principali:

Gli obiettivi possono essere specifici o di micro-analisi, ma tra gli obiettivi aziendali principali c’è sicuramente il miglioramento dell’efficienza produttiva e l’ottimizzazione del processo di acquisto del consumatore.

Spesso si tende ad analizzare i dati che provengono dall’esterno e non dall’azienda stessa, ma le analisi più interessanti si ottengono proprio da questi ultimi. Il CRM è la prima grande fonte di dati a cui un’azienda può attingere, mentre le altre fonti di dati sono molteplici:

Quando la mole di dati aumenta, infatti, è necessario creare nuove forme di gestione dei dati con vantaggi per l’intero business.

Dopo aver definito gli obiettivi, scelto le fonti, ottenuti i dati e inseriti gli stessi nelle tecnologie apposite per analizzarli, si passa alla big data analytics. Le analisi e gli strumenti disponibili sono tanti, si pensi alla Sentiment Analysis, che raccoglie in tempo reale le reazioni e gli atteggiamenti degli utenti o i trend, sulla base dei commenti sui social media.

Per restare aggiornato sui nostri articoli che parlano di innovazione tecnologica e ricerca ICT e di come possono aiutare le imprese, leggi il nostro JOurnal.

Looking for ICT project partners? Ask PMF Research by filling out the Contact Form

PKU Smart Sensor

PKU Smart Sensor project (n. 08RG7211000341 – CUP G89J18000710007) has been financed thanks to the European Regional Development Fund (ERDF) 2014/2020 Sicily, within Axis 1 – Specific Objective 1.1 – Action 1.1.5. ‘Realisation and validation of a Point-of-Care system for the home-testing monitoring of phenylalanine in patients suffering from hyperphenylalaninemias’. Amount of eligible PMF Srl expenditure: 208,864.00 euros. Amount of PMF Srl contribution: 146,674.00 euros. The content of this website is the responsibility of PMF Srl and does not necessarily reflect the views of the European Commission.

VESTA

VESTA project (no. F/050074/02/X32 – CUP B58I17000190008) has been financed under Axis 1 Investment Priority 1.b Action 1.1.3 LDR. BANDO HORIZON 2020 – PON 2014/2020 ‘Implementation of an evolved security (anti-theft) system based on innovative short-range radio inspection technologies and miniaturized audio/video multimedia sensors’. Amount of eligible expenditure PMF Srl: 299,915.01 euros. Amount of contribution PMF Srl: 131,284.02 euros. The content of this website is the responsibility of PMF Srl and does not necessarily reflect the views of the European Commission.

MINERVA

MINERVA project (no. F/190045/01/X44 – CUP B61B1900048008) has been financed thanks to the Fund for Sustainable Growth – ‘Intelligent Factory’ PON I&C 2014-2020, as in DM 5 March 2018 Chapter III. Innovative e-learning methods and virtual reality in companies. Amount of eligible expenditure PMF Srl: 274,791.25 euros. Amount of contribution PMF Srl: 160,532.00 euros. The content of this website is the responsibility of PMF Srl and does not necessarily reflect the views of the European Commission.

SECESTA ViaSafe

SECESTA ViaSafe project (no. 08CT6202000208 – CUP G69J18001010007) has been financed thanks to the European Regional Development Fund (ERDF) 2014/2020 Sicily, within Axis 1 – Specific Objective 1.1 – Action 1.1.5. ‘Application of the monitoring network from the volcanic ash fallout from Etna to mobility management in the Etnean territory’. Amount of eligible expenditure PMF Srl: 267,400.00 euros. Amount of PMF Srl contribution: 190,752.00 euros. The content of this website is the responsibility of PMF Srl and does not necessarily reflect the views of the European Commission.

This site uses cookies to improve users' browsing experience and to collect information on the use of the site.